Inhibition of unintentional extra carriers by Mn valence change for high insulating devices
نویسندگان
چکیده
For intrinsic oxide semiconductors, oxygen vacancies served as the electron donors have long been, and inevitably still are, attributed as the primary cause of conductivity, making oxide semiconductors seem hard to act as high insulating materials. Meanwhile, the presence of oxygen vacancies often leads to a persistent photoconductivity phenomenon which is not conducive to the practical use in the fast photoelectric response devices. Herein, we propose a possible way to reduce the influence of oxygen vacancies by introducing a valence change doping in the monoclinic β-Ga2O3 epitaxial thin film. The unintentional extra electrons induced by oxygen vacancies can be strongly suppressed by the change valence of the doped Mn ions from +3 to +2. The resistance for the Mn-doped Ga2O3 increases two orders of magnitude in compared with the pure Ga2O3. As a result, photodetector based on Mn-doped Ga2O3 thin films takes on a lower dark current, a higher sensitivity, and a faster photoresponse time, exhibiting a promising candidate using in high performance solar-blind photodetector. The study presents that the intentional doping of Mn may provide a convenient and reliable method of obtaining high insulating thin film in oxide semiconductor for the application of specific device.
منابع مشابه
Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures
The Fermi level position in (Ga,Mn)N has been determined from the period-analysis of GaN-related Franz-Keldysh oscillation obtained by contactless electroreflectance in a series of carefully prepared by molecular beam epitaxy GaN/Ga1-xMnxN/GaN(template) bilayers of various Mn concentration x. It is shown that the Fermi level in (Ga,Mn)N is strongly pinned in the middle of the band gap and the t...
متن کاملExploiting B Site Disorder for Phase Control in the Manganites
Disorder on the active d element site is usually very disruptive for conduction and long range order in perovskite transition metal oxides. However, in the background of phase competition such ‘B site’ dopants also act to promote one ordered phase at the expense of another. This occurs either through valence change of the transition metal or via creation of ‘defects’ in the parent magnetic stat...
متن کاملSignature of checkerboard fluctuations in the phonon spectra of a possible polaronic metal La1.2Sr1.8Mn2O7.
Charge carriers in low-doped semiconductors may distort the atomic lattice around them and through this interaction form so-called small polarons. High carrier concentrations on the other hand can lead to short-range ordered polarons (large polarons) and even to a long-range charge and orbital order. These ordered systems should be insulating with a large electrical resistivity. However, recent...
متن کاملWeak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19
Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may...
متن کاملMagnetization in electron- and Mn- doped SrTiO3
Mn-doped SrTiO(3.0), when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO3 via oxyge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016